The role of macronutrients in the muscle hypertrophy response during resistance training: a narrative review.
Keywords:
Macronutrients, Muscle hypertrophy, Protein, Resistance training, Sports nutritionAbstract
Resistance training is widely recognized for its effectiveness in promoting muscle hypertrophy, strength, and improving physical fitness. However, for these adaptations to occur optimally, nutrition plays a fundamental role, especially regarding the adequate and strategic intake of macronutrients: proteins, carbohydrates, and lipids. This narrative review aims to verify the role of each macronutrient in the hypertrophy process, with an emphasis on nutritional timing and individual needs. Protein, particularly that of high quality, is essential for muscle protein synthesis, and a consumption of between 1.6 and 2.2 g/kg/day is recommended, with adjustments for specific populations, such as the elderly. Carbohydrates contribute to the maintenance of glycogen stores and act in the modulation of fatigue and muscle recovery. Lipids, although less discussed, have important functions in hormonal regulation and as an energy substrate in low- to moderate-intensity training. The interaction between diet and training shows that a strategically planned diet enhances the effects of exercise, making nutritional intake a central element in optimizing hypertrophy. It is concluded that the conscious and personalized manipulation of macronutrients, combined with the regular practice of resistance training, represents an effective approach to maximize the results of strength, muscle mass and physical performance.
Downloads
References
AGERGAARD, J. et al. Even or skewed dietary protein distribution is reflected in the whole-body protein net-balance in healthy older adults: a randomized controlled trial. Clinical Nutrition, v.42, n.6, p.899-908, 2023. doi: 10.1016/j.clnu.2023.04.004
ALBRACHT-SCHULTE, K. et al. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. The Journal of Nutritional Biochemistry, v.58, p.1-16, 2018. doi: 10.1016/j.jnutbio.2018.02.012
AMAWI, A. et al. Athlete’ nutritional demands: a narrative review of nutritional requirements. Frontiers in Nutrition, v.10, p.1331854, 2024. doi: 10.3389/fnut.2023.1331854
ARENT, S.M. et al. Nutrient timing: a garage door of opportunity? Nutrients, v.12, n.7, p.1948, 2020. doi: 10.3390/nu12071948
BHULLAR, A.; PUTMAN, C.T.; MAZURAK, V.C. Potential role of omega-3 fatty acids on the myogenic program of satellite cells. Nutrition and Metabolic Insights, v.9, p.1-10, 2016. doi: 10.4137/NMI.S27481
CAPISTRANO Jr, V.L.M. et al. Nutrient intake and body composition in CrossFit athletes: a cross-sectional study. International Journal of Kinesiology & Sports Science, v.10, n.4, p.55-62, 2022. doi: 10.7575/aiac.ijkss.v.10n.4p.55
CASTILLO, M. et al. Energy and macronutrients intake in indoor sport team athletes: systematic review. Nutrients, v.14, n.22, p.4755, 2022. doi: 10.3390/nu14224755
CHOLEWA, J.M.; NEWMIRE, D.E.; ZANCHI, N.E. Carbohydrate restriction: friend or foe of resistance-based exercise performance? Nutrition, v.60, p.136-146, 2019. doi: 10.1016/j.nut.2018.09.026
DIMINA, L. et al. Combining plant proteins to achieve amino acid profiles adapted to various nutritional objectives – an exploratory analysis using linear programming. Frontiers in Nutrition, v.8, p.809685, 2022. doi: 10.3389/fnut.2021.809685
ESCOBAR, K.A.; VANDUSSELDORP, T.A.; KERKSICK, C.M. Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? The British Journal of Nutrition, v.116, n.12, p.2053-2065, 2016. doi: 10.1017/S0007114516003949
FERRANDO, A.A. et al. International Society of Sports Nutrition Position Stand: effects of essential amino acid supplementation on exercise and performance. Journal of the International Society of Sports Nutrition, v.20, n.1, p.2263409, 2023. doi: 10.1080/15502783.2023.2263409
FINK, J.; SCHOENFELD, B.J.; NAKAZATO, K. The role of hormones in muscle hypertrophy. The Physician and Sportsmedicine, v.46, n.1, p.129-134, 2018. doi: 10.1080/00913847.2018.1406778
FRAGALA, M.S. et al. Resistance training for older adults: position statement from the National Strength and Conditioning Association. Journal of Strength and Conditioning Research, v.33, n.8, p.2019-2052, 2019. doi: 10.1519/JSC.0000000000003230
FRITZEN, A.M.; LUNDSGAARD, A.M.; KIENS, B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nature Reviews Endocrinology, v.16, n.12, p.683-696, 2020. doi: 10.1038/s41574-020-0405-1
FRYDRYCH, A. et al. Lipids in clinical nutrition and health: narrative review and dietary recommendations. Foods, v.14, n.3, p.473, 2025. doi: 10.3390/foods14030473
GANAPATHY, A.; NIEVES, J.W. Nutrition and sarcopenia – what do we know? Nutrients, v.12, n.6, p.1755, 2020. doi: 10.3390/nu12061755
GRANIC, A. et al. Nutrition in the prevention and treatment of skeletal muscle ageing and sarcopenia: a single nutrient, a whole food and a whole diet approach. The Proceedings of the Nutrition Society, (in press), 2024. doi: 10.1017/S0029665124007432
HARGREAVES, M.; SPRIET, L.L. Skeletal muscle energy metabolism during exercise. Nature Metabolism, v.2, n.9, p.817-828, 2020. doi: 10.1038/s42255-020-0251-4
HEATON, L.E. et al. Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Medicine, v.47, n.11, p.2201-2218, 2017. doi: 10.1007/s40279-017-0759-2
HECTOR, A.J.; PHILLIPS, S.M. Protein recommendations for weight loss in elite athletes: a focus on body composition and performance. International Journal of Sport Nutrition and Exercise Metabolism, v.28, n.2, p.170-177, 2018. doi: 10.1123/ijsnem.2017-0273
HEILESON, J.L. et al. The effect of fish oil supplementation on resistance training-induced adaptations. Journal of the International Society of Sports Nutrition, v.20, n.1, p.2174704, 2023. doi: 10.1080/15502783.2023.2174704
HENSELMANS, M. et al. The effect of carbohydrate intake on strength and resistance training performance: a systematic review. Nutrients, v.14, n.4, p.856, 2022. doi: 10.3390/nu14040856
HUANG, Y.H. et al. Effects of omega-3 fatty acids on muscle mass, muscle strength and muscle performance among the elderly: a meta-analysis. Nutrients, v.12, n.12, p.3739, 2020. doi: 10.3390/nu12123739
IMPEY, S.G. et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Medicine, v.48, n.5, p.1031-1048, 2018. doi: 10.1007/s40279-018-0867-7
IRAKI, J. et al. Nutrition recommendations for bodybuilders in the off-season: a narrative review. Sports (Basel), v.7, n.7, p.154, 2019. doi: 10.3390/sports7070154
ISPOGLOU, T. et al. The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: implications for skeletal muscle mass, strength and function. Proceedings of the Nutrition Society, v.80, n.2, p.230-242, 2021. doi: 10.1017/S0029665120008010
JACKMAN, S.R. et al. Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Frontiers in Physiology, v. 8, p.390, 2017. doi: 10.3389/fphys.2017.00390
JAGER, R. et al. International Society of Sports Nutrition position stand: long-chain omega-3 polyunsaturated fatty acids. Journal of the International Society of Sports Nutrition, v.22, n.1, p.2441775, 2025. doi: 10.1080/15502783.2024.2441775
JÄGER, R. et al. International Society of Sports Nutrition position stand: protein and exercise. Journal of the International Society of Sports Nutrition, v.14, p.20, 2017. doi: 10.1186/s12970-017-0177-8
JANNAS-VELA, S. et al. The role of omega-3 polyunsaturated fatty acids and their lipid mediators on skeletal muscle regeneration: a narrative review. Nutrients, v.15, n.4, p.871, 2023. doi: 10.3390/nu15040871
JEROMSON, S. et al. Omega-3 fatty acids and skeletal muscle health. Marine Drugs, v.13, n.11, p.6977-7004, 2015. doi: 10.3390/md13116977
KERKSICK, C.M. et al. International Society of Sports Nutrition Position Stand: nutrient timing. Journal of The International Society of Sports Nutrition, v.14, p.33, 2017. doi: 10.1186/s12970-017-0189-4
KIM, J.; KIM, E.K. Nutritional strategies to optimize performance and recovery in rowing athletes. Nutrients, v.12, n.6, p.1685, 2020. doi: 10.3390/nu12061685
KING, A. et al. The ergogenic effects of acute carbohydrate feeding on resistance exercise performance: a systematic review and meta-analysis. Sports Medicine, v.52, n.11, p.2691-2712, 2022. doi: 10.1007/s40279-022-01716-w
LIAO, C.D. et al. Comparative efficacy of different protein supplements on muscle mass, strength, and physical indices of sarcopenia among community-dwelling, hospitalized or institutionalized older adults undergoing resistance training: a network meta-analysis of randomized controlled trials. Nutrients, v.16, n.7, p.941, 2024. doi: 10.3390/nu16070941
LIM, C. et al. An evidence-based narrative review of mechanisms of resistance exercise-induced human skeletal muscle hypertrophy. Medicine and Science in Sports and Exercise, v.54, n.9, p.1546-1559, 2022. doi: 10.1249/MSS.0000000000002929
LUNDSGAARD, A.M.; FRITZEN, A.M.; KIENS, B. The importance of fatty acids as nutrients during post-exercise recovery. Nutrients, v.12, n.2, p.280, 2020. doi: 10.3390/nu12020280
MARGOLIS, L.M.; PASIAKOS, S.M. Low carbohydrate availability impairs hypertrophy and anaerobic performance. Current Opinion in Clinical Nutrition & Metabolic Care, v.26, n.4, p.347-352, 2023. doi: 10.1097/MCO.0000000000000934
MATA, F. et al. Carbohydrate availability and physical performance: physiological overview and practical recommendations. Nutrients, v.11, n.5, p.1084, 2019. doi: 10.3390/nu11051084
MAUGHAN, R.J. et al. IOC consensus statement: dietary supplements and the high-performance athlete. British Journal of Sports Medicine, v.52, n.7, p.439-455, 2018. doi: 10.1136/bjsports-2018-099027
MENDES, M.D.; MALAQUIAS, G.B.; SOUZA, M.L.R. Avaliação da composição corporal e perfil alimentar em atletas de boxe. Revista Brasileira de Nutrição Esportiva, v.15, n.90, p.36-48, 2021. [sin doi]
MILLER, W.L. Disorders in the initial steps of steroid hormone synthesis. Journal of Steroid Biochemistry and Molecular Biology, v.165, n.PtA, p.18-37, 2017. doi: 10.1016/j.jsbmb.2016.03.009
MONTEYNE, A.J. et al. Vegan and omnivorous high protein diets support comparable daily myofibrillar protein synthesis rates and skeletal muscle hypertrophy in young adults. The Journal of Nutrition, v.153, n.6, p.1680-1695, 2023. doi: 10.1016/j.tjnut.2023.02.023
MOORE, D.R. Maximizing post-exercise anabolism: the case for relative protein intakes. Frontiers in Nutrition, v.6, p.147, 2019. doi: 10.3389/fnut.2019.00147
MORENO-PEREZ, D. et al. Effects of protein-carbohydrate vs. carbohydrate alone supplementation on immune inflammation markers in endurance athletes: a randomized controlled trial. European Journal of Applied Physiology, v.123, n.7, p.1495-1505, 2023. doi: 10.1007/s00421-023-05168-6
MORTON, R.W. et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, v.52, n.6, p.376-384, 2018. doi: 10.1136/bjsports-2017-097608
MUSCELLA, A. et al. The regulation of fat metabolism during aerobic exercise. Biomolecules, v.10, n.12, p.1699, 2020. doi: 10.3390/biom10121699
NELSON, D.L.; COX, M.M. Princípios de bioquímica de Lehninger. 8ª ed. Porto Alegre: Editora Artmed, 2022. 1248p. [sin doi]
NICHELE, S.; PHILLIPS, S.M.; BOAVENTURA, B.C.B. Plant-based food patterns to stimulate muscle protein synthesis and support muscle mass in humans: a narrative review. Applied Physiology, Nutrition, and Metabolism, v.47, n.7, p.700-710, 2022. doi: 10.1139/apnm-2021-0806
NIEMAN, D.C. Effects of exercise training on immune function and implications for nutrition support. Alternative Therapies in Health and Medicine, v.26, n.Supl.3, p.17-19, 2020. [sin doi].
PINCKAERS, P.J.M. et al. The anabolic response to plant-based protein ingestion. Sports Medicine, v.51, n.Suppl 1, p.59-74, 2021. doi: 10.1007/s40279-021-01540-8
REIS, C.E.G. et al. Effects of pre-sleep protein consumption on muscle-related outcomes – a systematic review. Journal of Science and Medicine in Sport, v.24, n.2, p.177-182, 2021. doi: 10.1016/j.jsams.2020.07.016
RIBEIRO, A.S. et al. The effects of carbohydrate intake on body composition and muscular strength in trained men undergoing a progressive resistance training. International Journal of Exercise Science, v.16, n.2, p.267-280, 2023.
ROGERI, P.S. et al. Strategies to prevent sarcopenia in the aging process: role of protein intake and exercise. Nutrients, v.14, n.1, p.52, 2021. doi: 10.3390/nu14010052
SCHIAFFINO, S. et al. Molecular mechanisms of skeletal muscle hypertrophy. Journal of Neuromuscular Diseases, v.8, n.2, p.169-183, 2021. doi: 10.3233/JND-200568
SCHMITT, C.S. et al. The effects of a low carbohydrate diet on erectile function and sérum testosterone levels in hypogonadal men with metabolic syndrome: a randomized clinical trial. BMC Endocrine Disorders, v.23, n.1, p.30, 2023. doi: 10.1186/s12902-023-01278-6
SCHOENFELD, B.J.; ARAGON, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, v.15, p.10, 2018a. doi: 10.1186/s12970-018-0215-1
SCHOENFELD, B.J.; ARAGON, A.A. Is there a postworkout anabolic window of opportunity for nutrient consumption? Clearing up controversies. The Journal of Orthopaedic and Sports Physical Therapy, v.48, n.12, p.911-914, 2018b. doi: 10.2519/jospt.2018.0615
SLATER, G.J. et al. Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training? Frontiers in Nutrition, v. 6, p.131, 2019. doi: 10.3389/fnut.2019.00131
STOKES, T. et al. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients, v.10, n.2, p.180, 2018. doi: 10.3390/nu10020180
THOMAS, D.T.; ERDMAN, K.A.; BURKE, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Medicine and Science in Sports and Exercise, v.48, n.3, p.543-568, 2016. doi: 10.1249/MSS.0000000000000852
TIMRAZ, M. et al. The effect of long chain n-3 fatty acid supplementation on muscle strength in older adults: a systematic review and meta-analysis. Nutrients, v.15, n.16, p.3579, 2023. doi: 10.3390/nu15163579
TROMMELEN, J.; VAN LOON, L.J.C. Pre-sleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutrients, v.8, n.12, p.763, 2016. doi: 10.3390/nu8120763
TSENG, P.T. et al. Omega-3 polyunsaturated fatty acids in sarcopenia management: a network meta-analysis of randomized controlled trials. Ageing Research Reviews, v.90, p.102014, 2023. doi: 10.1016/j.arr.2023.102014
VARGAS-MOLINA, S. et al. Effects of the ketogenic diet on strength performance in trained men and women: a systematic review and meta-analysis. Nutrients, v.16, n.14, p.2200, 2024. doi: 10.3390/nu16142200
VITALE, K.; GETZIN, A. Nutrition and supplement update for the endurance athlete: review and recommendations. Nutrients, v.11, n.6, p.1289, 2019. doi: 10.3390/nu11061289
WARNEKE, K. et al. Physiology of stretch-mediated hypertrophy and strength increases: a narrative review. Sports Medicine, v.53, n.11, p.2055-2075, 2023. doi: 10.1007/s40279-023-01898-x
WHITTAKER, J.; WU, K. Low-fat diets and testosterone in men: systematic review and meta-analysis of intervention studies. The Journal of Steroid Biochemistry and Molecular Biology, v.210, p.105888, 2021. doi: 10.1016/j.jsbmb.2021.105878
WITARD, O.C.; BANNOCK, L.; TIPTON, K.D. Making sense of muscle protein synthesis: a focus on muscle growth during resistance training. International Journal of Sport Nutrition and Exercise Metabolism, v.32, n.1, p.49-61, 2022. doi: 10.1123/ijsnem.2021-0139
ZHANG, W. et al. Testosterone levels positively linked to muscle mass but not strength in adult males aged 20-59 years: a cross-sectional study. Frontiers in Physiology, v.16, p.1512268, 2025. doi: 10.3389/fphys.2025.1512268
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marcos Vinícius Nogueira dos Santos, Adolfo César da Silva Pires, Ana Luísa Heringer Duarte, Marcio Leandro Ribeiro de Souza

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).



