Evaluation of the immunomodulatory activity of copalic acid from Copaiba resin

Authors

  • Bruno Damasceno Bahia Federal University of Juiz de Fora
  • Kézia Cristine Barbosa Ferreira Federal University of Juiz de Fora
  • Danilo de Souza Costa Federal University of Juiz de Fora
  • Chislene Pereira Vanelli Hospital Universitário da UFJF
  • Frederico Pittella Silva Federal University of Juiz de Fora
  • Ademar Alves da Silva Filho Federal University of Juiz de Fora
  • Ana Cláudia Chagas de Paula Ladvocat Federal University of Juiz de Fora
  • Jose Otavio do Amaral Correa UFJF https://orcid.org/0000-0003-2231-1160

Abstract

Introduction: The immune system has the function of maintaining the body's homeostasis, acting in balance against pathogens and tumors. Inappropriate immune responses can promote the onset of diseases, including autoimmune diseases. The immune response can be modulated through traditional drugs, such as anti-inflammatories and immunosuppressants, which are sometimes associated with high costs and the occurrence of serious adverse effects. In this scenario, natural substances can be an alternative for the development of new immunomodulatory drugs. Copalic acid (CA), present in Copaiba sp resin, is a natural diterpene with a potential immunomodulatory activity. Objective: To evaluate the in vitro immunomodulatory effects of CA. Material and Methods: After isolated and identified from copaiba resin, the cytotoxicity of AC was evaluated by MTT and Trypan blue methods. Cell proliferation, nitric oxide (NO) production (by Griess method), and cytokine production (by ELISA) were evaluated in cells from C57BL/6 mice. Results: CA did not show a reduction in cell viability at concentrations of 75, 50, 25, 10 and 5 μM. CA (75 and 50 µM) inhibited cell proliferation stimulated by concanavalin A and, at 75 µM, reduced NO production. CA was also able to reduce the production of cytokines IL-1β, IL-6 and IL-12, mainly at 75 µM. Conclusion: CA showed an in vitro immunomodulatory effect, reinforcing its anti-inflammatory potential. However, further studies must be carried out to clarify its mechanism of action.

 

Keywords: Immunomodulation; natural compounds; New therapeutics drugs.

Author Biography

Jose Otavio do Amaral Correa, UFJF

Possuo graduação em Farmácia e Bioquímica pela Universidade Federal de Juiz de Fora (UFJF, 1998), Mestrado em Ciências pela Fundação Oswaldo Cruz (FIOCRUZ/RJ, 2003), Doutor em patologia pela Universidade Federal Fluminense (UFF/Niterói, 2008). Sou Gerente de Ensino e Pesquisa do Hospital Universitário da UFJF, professor Associado II do Departamento de Ciências Farmacêuticas da Universidade Federal de Juiz de Fora. Neste Departamento leciono as disciplinas de Bioquímica aplicada às Análises Clínicas, Imunologia aplicada às Análises Clínicas e Orientador do estágio e tutor em residência em análises clínicas no Hospital Universitário da UFJF. Na pós-graduação strictu sensu Fui Coordenador e sou membro Permanente do Programa de Pós-Graduação em Ciências Farmacêuticas (Mestrado e doutorado em Ciências Farmacêuticas / UFJF / Capes 4). Membro permanente Programa de Pós-graduação em Saúde (mestrado e doutorado) no Núcleo de Pesquisa em Imunopatologia e Imunologia Clínica - (Faculdade de Medicina / UFJF / Capes 5). Possui experiência na área de Imunologia celular, imunofarmacologia e bioquímica clínica. Em Educação, avaliador do INEP/MEC, com experiência em avaliação de cursos de graduação e institucional, atuou como membro da Comissão Técnica de Acompanhamento de Avaliação do INEP/MEC representante da área da Farmácia na CTAA/MEC(2013-2015). Na gestão, fui Diretor da Faculdade de Farmácia da UFJF (2014-2018). Também fui Coordenador do curso de Farmácia da UFJF 2012 a 2014 e fui Coordenador do Programa de Pós-Graduação em Ciências Farmacêuticas da Faculdade de Farmácia / UFJF. É membro de corpo editorial de revista internacional especializada e revisor de periódicos nacionais e internacionais. Publiquei, desde 1999, 47 artigos em periódicos,sendo meu fator H = 14 (SCOPUS), H= 14 e índice i10 = 18 (https://www.adscientificindex.com/scientist/jose-otavio-do-amaral-correa/897285). Tenho diversas formas de citação em meus trabalhos (CORREA, J.O.A.; Corrêa, José Otávio; OTÁVIO DO AMARAL CORRÊA, JOSÉ; DO AMARAL CORRÊA JOSÉ, O; DO AMARAL CORRÊA, JOSÉ OTAVIO; José Otávio do Amaral Corrêa; Corrêa, José Otávio do Amaral; DO AMARAL CORRÊA, JO; AMARAL CORRÊA, JOSÉ OTÁVIO DO; CORRÊA, JOSÉ; CORRÊA, JOSÉ O.A.). Em bases de pesquisadores possuo o ResearcherID: AAE-8042-2021 ( http://www.researcherid.com/rid/AAE-8042-2021), Orcid: 0000-0003-2231-1160 (https://orcid.org/0000-0003-2231-1160), Scopus Author Identifier: 36626974500 e Google Scholar (https://scholar.google.com.br/citations?hl=pt-BR&user=l9eqYukAAAAJ). 

References

ABRÃO, F. et al. Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines. BMC Complementary and Alternative Medicine, v. 15, n. 443, p. 1-10, 2015.

ADAN, A.; KIRAZ, Y.; BARAN, Y. Cell proliferation and cytotoxicity assays. Current pharmaceutical biotechnology, v. 17, n. 14, p. 1213-1221, 2016.

ALVES, J. M. et al. Copaifera multijuga oleoresin and its constituent diterpene (-)-copalic acid: Genotoxicity and chemoprevention study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, v. 819, p. 26-30, 2017.

ARICAN, O. et al. Serum Levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and IL-18 in Patients With Active Psoriasis and Correlation With Disease Severity. Mediators of Inflammation, v. 2005, n. 5, p. 273-279, 2005.

ARREOLA, R. et al. Immunomodulation and anti-inflammatory effects of garlic compounds. Journal of immunology research, v. 2015, Article ID 401630, p. 1-13, 2015.

CAPUTO, L. S. et al. Copaiba oil suppresses inflammation in asthmatic lungs of BALB/c mice induced with ovalbumin. International Immunopharmacology, v. 80, p. 106177, 2020.

CHAN, L. L.; RICE, W. L.; QIU, J. Observation and quantification of the morphological effect of trypan blue rupturing dead or dying cells. PLoS One, v. 15, n. 1, p. 1-17, 2020.

CHEN, L. et al. NOD-like receptors in autoimmune diseases. Acta Pharmacologica Sinica, v. 42, n. 11, p. 1742-1756, 2021.

DE SOUZA, M. G. M. et al. ent-Copalic acid antibacterial and anti-biofilm properties against Actinomyces naeslundii and Peptostreptococcus anaerobius. Anaerobe, v. 52, p. 43-49, 2018.

DI MEO, S. et al. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative medicine and cellular longevity, v. 2016, Article ID 1245049, p. 1-44, 2016.

DIAS, D. S. et al. Copaiba oil suppresses inflammatory cytokines in splenocytes of C57Bl/6 mice induced with experimental autoimmune encephalomyelitis (EAE). Molecules, v. 19, n. 8, p. 12814-12826, 2014.

DIEFENBACH, A. L. et al. Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytotheraphy Research, v. 32, n. 4, p. 586-596, 2018.

DUTRA, R. C. et al. Euphol prevents experimental autoimmune encephalomyelitis in mice: evidence for the underlying mechanisms. Biochemical pharmacology, v. 83, n. 4, p. 531-542, 2012.

FAVALLI, E. G. Understanding the Role of Interleukin-6 (IL-6) in the Joint and Beyond: A Comprehensive Review of IL-6 Inhibition for the Management of Rheumatoid Arthritis. Rheumatology and therapy, v. 7, n. 3, p. 473-516, 2020.

FONTES, L. B. A. et al. Immunomodulatory effects of licochalcone A on experimental autoimmune encephalomyelitis. Journal of Pharmacy and Pharmacology, v. 66, n. 6, p. 886-894, 2014.

FONTES, L. B. A. et al. β-Caryophyllene ameliorates the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomedicine & Pharmacotherapy, v. 91, p. 257-264, 2017.

FUJII, M. et al. Enzymatic resolution of albicanol and its application to the synthesis of (−)-copalic acid. Journal of Molecular Catalysis B: Enzymatic, v. 59, n. 4, p. 254-260, 2009.

GERTSCH, J.; VIVEROS-PAREDES, J. M.; TAYLOR, P. Plant immunostimulants—Scientific paradigm or myth? Journal of ethnopharmacology, v. 136, n. 3, p. 385-391, 2011.

GREEN, L. C. et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical biochemistry, v. 126, n. 1, p. 131-138, 1982.

GUIMARÃES-SANTOS, A. et al. Copaiba Oil-Resin Treatment Is Neuroprotective and Reduces Neutrophil Recruitment and Microglia Activation after Motor Cortex Excitotoxic Injury. Evidence-based Complementary and Alternative Medicine, v. 2012, Article ID 918174, p. 1-9, 2012.

GUSHIKEN, L. F. S. et al. Skin Wound Healing Potential and Mechanisms of the Hydroalcoholic Extract of Leaves and Oleoresin of Copaifera langsdorffii Desf. Kuntze in Rats. Evidence-based Complementary and Alternative Medicine, v. 2017, Article ID 6589270, p. 1-15, 2017.

ITO, H. Treatment of Crohn’s disease with anti-IL-6 receptor antibody. Journal of Gastroenterology, v. 40, (Suppl XVI), p. 32-34, 2005.

JANTAN, I.; AHMAD, W.; BUKHARI, S. N. A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Frontiers in plant science, v. 6, n. 655, p. 1-18, 2015.

KOBAYASHI, C. et al. Pharmacological evaluation of Copaifera multijuga oil in rats. Pharmaceutical Biology, v. 49, n. 3, p. 306-313, 2011.

LIU, X. B., et al. An in vivo and in vitro assessment of the anti-inflammatory, antinociceptive, and immunomodulatory activities of Clematis terniflora DC. extract, participation of aurantiamide acetate. Journal of Ethnopharmacology, v. 167, p. 287-294, 2015.

LONGO, D. L. Avaliação da citotoxicidade e expressão de citocinas induzidas por resina composta fotopolimerizável. 2013. Tese de Doutorado. Universidade de São Paulo.

LU, X. Impact of IL-12 in Cancer. Current Cancer Drug Targets, v. 17, n. 8, p. 682-697, 2017.

MA, X. et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Research 2015, v. 4, n. 1465, p. 1-13, 2019.

MEDEIROS, V. G. Isolamento, síntese e avaliação da atividade biológica de diterpenos do tipo labdano. 2019. Dissertação (Mestrado em Bioquímica e Biologia Molecular) – Universidade Federal de Juiz de Fora – campus Governador Valadares.

MEDEIROS, V. G.; DURÁN, F. J.; LANG, K. L. Copalic acid: occurrence, chemistry, and biological activities. Revista Brasileira de Farmacognosia, v. 31, n. 4, p. 375-386, 2021.

MORIASI, C. et al. Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), v. 12, n. 10, p. 1221-1238, 2012.

MOSMANN, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, v. 65, n. 1-2, p. 55-63, 1983.

NAKAMURA, M. T. et al. Copaiba Oil and Its Constituent Copalic Acid as Chemotherapeutic Agents against Dermatophytes. Journal of the Brazilian Chemical Society, v. 28, n. 8, p. 1377-1383, 2017.

OLIVEIRA, R. B. et al. Effect of the Copaifera langsdorffii Desf. Leaf Extract on the Ethylene Glycol-Induced Nephrolithiasis in Rats. Evidence-Based Complementary and Alternative Medicine, v. 2013, Article ID 131372, p. 1-10, 2013.

QUINTANS, J. S. et al. Monoterpenes modulating cytokines-A review. Food and chemical toxicology, v. 123, p. 233-257, 2019.

RANG, H. P.; DALE, M.M. Farmacologia. 8. ed. Rio de Janeiro: Elsevier, 2016, p. 226.

RICCIO, G.; LAURITANO, C. Microalgae with immunomodulatory activities. Marine Drugs, v. 18, n. 2, p. 1-18, 2020.

SANCHEZ-LOPEZ, E. et al. Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production. Cell metabolism, v. 29, n. 6, p. 1350-1362. e7, 2019.

SENFF-RIBEIRO, A. et al. Cytotoxic effect of a new 1, 3, 4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma. British journal of cancer, v. 91, n. 2, p. 297-304, 2004.

SFORCIN, J. M. et al. Lemongrass effects on IL-1β and IL-6 production by macrophages. Natural product research, v. 23, n. 12, p. 1151-1159, 2009.

SHAKOOR, H. et al. Immunomodulatory effects of dietary polyphenols. Nutrients, v. 13, n. 3, p. 728, 2021.

SOUZA; A. B. et al. Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules, v. 16, n. 11, p. 9611-9619, 2011.

TEIXEIRA, F. B. et al. Copaiba oil-resin (Copaifera reticulata Ducke) modulates the inflammation in a model of injury to rats’ tongues. BMC Complementary and Alternative Medicine, v. 17, n. 1, p. 1-18, 2017.

TIAN, Y. et al. Cytokine secretion requires phosphatidylcholine synthesis. The Journal of cell biology, v. 181, n. 6, p. 945-957, 2008.

VARGAS, F. S. et al. Biological activities and cytotoxicity of diterpenes from Copaifera spp. Oleoresins. Molecules, v. 20, n. 4, p. 6194-6210, 2015.

VOM BERG, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease–like pathology and cognitive decline. Nature medicine, v. 18, n. 12, p. 1812-1819, 2012.

WANG, B. et al. Aucubin protects chondrocytes against IL-1β-induced apoptosis in vitro and inhibits osteoarthritis in mice model. Drug design, development and therapy, v. 13, p. 3529-3538, 2019.

ZHANG, M. et. al. Parthenolide inhibtis the iniciation of experimental autoimmune neuritis. Journal of Neuroimmunology, v. 305, p. 154-161, 2017.

ZHONG, Zhenyu et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, v. 560, n. 7717, p. 198-203, 2018.

ZHOU, P. H.; LIU, S. Q.; PENG H. The effect of hyaluronic acid on IL‐1β‐induced chondrocyte apoptosis in a rat model of osteoarthritis. Journal of Orthopaedic Research, v. 26, n. 12, p. 1643-1648, 2008.

Published

2023-12-31

How to Cite

Bahia, B. D., Ferreira, K. C. B., Costa, D. de S., Vanelli, C. P., Silva, F. P., da Silva Filho, A. A., Ladvocat, A. C. C. de P., & Correa, J. O. do A. (2023). Evaluation of the immunomodulatory activity of copalic acid from Copaiba resin. REVISTA CIENTÍFICA DA FAMINAS, 18(2), 1–13. Retrieved from https://periodicos.faminas.edu.br/index.php/RCFaminas/article/view/716