O papel dos macronutrientes na resposta de hipertrofia muscular durante o treinamento resistido: uma revisão narrativa.

Autores

  • Marcos Vinícius Nogueira dos Santos Faculdade de Minas FAMINAS-BH
  • Adolfo César da Silva Pires Faculdade de Minas FAMINAS-BH
  • Ana Luísa Heringer Duarte Faculdade de Minas FAMINAS-BH
  • Marcio Leandro Ribeiro de Souza Faculdade de Minas Faminas-BH https://orcid.org/0000-0003-1517-4516

Palavras-chave:

Macronutrientes, Hipertrofia muscular, Proteína, Treinamento resistido, Nutrição esportiva

Resumo

O treinamento resistido é amplamente reconhecido por sua eficácia na promoção da hipertrofia muscular, força e melhora do condicionamento físico. No entanto, para que essas adaptações ocorram de maneira otimizada, a nutrição exerce papel fundamental, especialmente quanto à ingestão adequada e estratégica dos macronutrientes: proteínas, carboidratos e lipídios. Esta revisão narrativa teve como objetivo verificar o papel de cada macronutriente no processo de hipertrofia, com ênfase no timing nutricional e necessidades individuais. A proteína, particularmente a de alto valor biológico, é essencial para a síntese proteica muscular, sendo recomendado um consumo entre 1,6 e 2,2 g/kg/dia, com ajustes para populações específicas, como idosos. Os carboidratos contribuem para a manutenção dos estoques de glicogênio e atuam na modulação da fadiga e da recuperação muscular. Os lipídios, embora menos discutidos, possuem funções importantes na regulação hormonal e como substrato energético em treinos com intensidade baixa a moderada. A interação entre dieta e treinamento evidencia que uma alimentação estrategicamente planejada potencializa os efeitos do exercício, tornando o aporte nutricional um elemento central na otimização da hipertrofia. Conclui-se que a manipulação consciente e personalizada dos macronutrientes, aliada à prática regular do treinamento resistido, representa uma abordagem eficaz para maximizar os resultados de força, massa muscular e desempenho físico.  

timing

nutricional e necessidades individuais. A proteína, particularmente a de alto valor biológico, é essencial para a síntese proteica muscular, sendo recomendado um consumo entre 1,6 e 2,2 g/kg/dia, com ajustes para populações específicas, como idosos. Os carboidratos contribuem para a manutenção dos estoques de glicogênio e atuam na modulação da fadiga e da recuperação muscular. Os lipídios, embora menos discutidos, possuem funções importantes na regulação hormonal e como substrato energético em treinos com intensidade baixa a moderada. A interação entre dieta e treinamento evidencia que uma alimentação estrategicamente planejada potencializa os efeitos do exercício, tornando o aporte nutricional um elemento central na otimização da hipertrofia. Conclui-se que a manipulação consciente e personalizada dos macronutrientes, aliada à prática regular do treinamento resistido, representa uma abordagem eficaz para maximizar os resultados de força, massa muscular e desempenho físico.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcos Vinícius Nogueira dos Santos, Faculdade de Minas FAMINAS-BH

Graduando em Nutrição na Faculdade de Minas Faminas-BH

Adolfo César da Silva Pires, Faculdade de Minas FAMINAS-BH

Graduando em Nutrição na Faculdade de Minas Faminas-BH

Ana Luísa Heringer Duarte, Faculdade de Minas FAMINAS-BH

Graduanda em Nutrição na Faculdade de Minas Faminas-BH

Marcio Leandro Ribeiro de Souza, Faculdade de Minas Faminas-BH

Doutor e Mestre pela Faculdade de Medicina da UFMG. Possui quatro pós-graduações Lato sensu em Nutrição Clínica Funcional, Nutrição Esportiva Funcional, Fitoterapia Funcional e Treinamento Desportivo. É professor no curso de Nutrição na Faculdade de Minas FAMINAS-BH. É professor nos cursos de pós-graduação da VP Centro de Nutrição Funcional. É autor dos livros: "Nutrientes aplicados à prática clínica" e "Suplementação Nutricional: guia prático para o atendimento".

Referências

AGERGAARD, J. et al. Even or skewed dietary protein distribution is reflected in the whole-body protein net-balance in healthy older adults: a randomized controlled trial. Clinical Nutrition, v.42, n.6, p.899-908, 2023. doi: 10.1016/j.clnu.2023.04.004

ALBRACHT-SCHULTE, K. et al. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. The Journal of Nutritional Biochemistry, v.58, p.1-16, 2018. doi: 10.1016/j.jnutbio.2018.02.012

AMAWI, A. et al. Athlete’ nutritional demands: a narrative review of nutritional requirements. Frontiers in Nutrition, v.10, p.1331854, 2024. doi: 10.3389/fnut.2023.1331854

ARENT, S.M. et al. Nutrient timing: a garage door of opportunity? Nutrients, v.12, n.7, p.1948, 2020. doi: 10.3390/nu12071948

BHULLAR, A.; PUTMAN, C.T.; MAZURAK, V.C. Potential role of omega-3 fatty acids on the myogenic program of satellite cells. Nutrition and Metabolic Insights, v.9, p.1-10, 2016. doi: 10.4137/NMI.S27481

CAPISTRANO Jr, V.L.M. et al. Nutrient intake and body composition in CrossFit athletes: a cross-sectional study. International Journal of Kinesiology & Sports Science, v.10, n.4, p.55-62, 2022. doi: 10.7575/aiac.ijkss.v.10n.4p.55

CASTILLO, M. et al. Energy and macronutrients intake in indoor sport team athletes: systematic review. Nutrients, v.14, n.22, p.4755, 2022. doi: 10.3390/nu14224755

CHOLEWA, J.M.; NEWMIRE, D.E.; ZANCHI, N.E. Carbohydrate restriction: friend or foe of resistance-based exercise performance? Nutrition, v.60, p.136-146, 2019. doi: 10.1016/j.nut.2018.09.026

DIMINA, L. et al. Combining plant proteins to achieve amino acid profiles adapted to various nutritional objectives – an exploratory analysis using linear programming. Frontiers in Nutrition, v.8, p.809685, 2022. doi: 10.3389/fnut.2021.809685

ESCOBAR, K.A.; VANDUSSELDORP, T.A.; KERKSICK, C.M. Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? The British Journal of Nutrition, v.116, n.12, p.2053-2065, 2016. doi: 10.1017/S0007114516003949

FERRANDO, A.A. et al. International Society of Sports Nutrition Position Stand: effects of essential amino acid supplementation on exercise and performance. Journal of the International Society of Sports Nutrition, v.20, n.1, p.2263409, 2023. doi: 10.1080/15502783.2023.2263409

FINK, J.; SCHOENFELD, B.J.; NAKAZATO, K. The role of hormones in muscle hypertrophy. The Physician and Sportsmedicine, v.46, n.1, p.129-134, 2018. doi: 10.1080/00913847.2018.1406778

FRAGALA, M.S. et al. Resistance training for older adults: position statement from the National Strength and Conditioning Association. Journal of Strength and Conditioning Research, v.33, n.8, p.2019-2052, 2019. doi: 10.1519/JSC.0000000000003230

FRITZEN, A.M.; LUNDSGAARD, A.M.; KIENS, B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nature Reviews Endocrinology, v.16, n.12, p.683-696, 2020. doi: 10.1038/s41574-020-0405-1

FRYDRYCH, A. et al. Lipids in clinical nutrition and health: narrative review and dietary recommendations. Foods, v.14, n.3, p.473, 2025. doi: 10.3390/foods14030473

GANAPATHY, A.; NIEVES, J.W. Nutrition and sarcopenia – what do we know? Nutrients, v.12, n.6, p.1755, 2020. doi: 10.3390/nu12061755

GRANIC, A. et al. Nutrition in the prevention and treatment of skeletal muscle ageing and sarcopenia: a single nutrient, a whole food and a whole diet approach. The Proceedings of the Nutrition Society, (in press), 2024. doi: 10.1017/S0029665124007432

HARGREAVES, M.; SPRIET, L.L. Skeletal muscle energy metabolism during exercise. Nature Metabolism, v.2, n.9, p.817-828, 2020. doi: 10.1038/s42255-020-0251-4

HEATON, L.E. et al. Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Medicine, v.47, n.11, p.2201-2218, 2017. doi: 10.1007/s40279-017-0759-2

HECTOR, A.J.; PHILLIPS, S.M. Protein recommendations for weight loss in elite athletes: a focus on body composition and performance. International Journal of Sport Nutrition and Exercise Metabolism, v.28, n.2, p.170-177, 2018. doi: 10.1123/ijsnem.2017-0273

HEILESON, J.L. et al. The effect of fish oil supplementation on resistance training-induced adaptations. Journal of the International Society of Sports Nutrition, v.20, n.1, p.2174704, 2023. doi: 10.1080/15502783.2023.2174704

HENSELMANS, M. et al. The effect of carbohydrate intake on strength and resistance training performance: a systematic review. Nutrients, v.14, n.4, p.856, 2022. doi: 10.3390/nu14040856

HUANG, Y.H. et al. Effects of omega-3 fatty acids on muscle mass, muscle strength and muscle performance among the elderly: a meta-analysis. Nutrients, v.12, n.12, p.3739, 2020. doi: 10.3390/nu12123739

IMPEY, S.G. et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Medicine, v.48, n.5, p.1031-1048, 2018. doi: 10.1007/s40279-018-0867-7

IRAKI, J. et al. Nutrition recommendations for bodybuilders in the off-season: a narrative review. Sports (Basel), v.7, n.7, p.154, 2019. doi: 10.3390/sports7070154

ISPOGLOU, T. et al. The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: implications for skeletal muscle mass, strength and function. Proceedings of the Nutrition Society, v.80, n.2, p.230-242, 2021. doi: 10.1017/S0029665120008010

JACKMAN, S.R. et al. Branched-chain amino acid ingestion stimulates muscle myofibrillar protein synthesis following resistance exercise in humans. Frontiers in Physiology, v. 8, p.390, 2017. doi: 10.3389/fphys.2017.00390

JAGER, R. et al. International Society of Sports Nutrition position stand: long-chain omega-3 polyunsaturated fatty acids. Journal of the International Society of Sports Nutrition, v.22, n.1, p.2441775, 2025. doi: 10.1080/15502783.2024.2441775

JÄGER, R. et al. International Society of Sports Nutrition position stand: protein and exercise. Journal of the International Society of Sports Nutrition, v.14, p.20, 2017. doi: 10.1186/s12970-017-0177-8

JANNAS-VELA, S. et al. The role of omega-3 polyunsaturated fatty acids and their lipid mediators on skeletal muscle regeneration: a narrative review. Nutrients, v.15, n.4, p.871, 2023. doi: 10.3390/nu15040871

JEROMSON, S. et al. Omega-3 fatty acids and skeletal muscle health. Marine Drugs, v.13, n.11, p.6977-7004, 2015. doi: 10.3390/md13116977

KERKSICK, C.M. et al. International Society of Sports Nutrition Position Stand: nutrient timing. Journal of The International Society of Sports Nutrition, v.14, p.33, 2017. doi: 10.1186/s12970-017-0189-4

KIM, J.; KIM, E.K. Nutritional strategies to optimize performance and recovery in rowing athletes. Nutrients, v.12, n.6, p.1685, 2020. doi: 10.3390/nu12061685

KING, A. et al. The ergogenic effects of acute carbohydrate feeding on resistance exercise performance: a systematic review and meta-analysis. Sports Medicine, v.52, n.11, p.2691-2712, 2022. doi: 10.1007/s40279-022-01716-w

LIAO, C.D. et al. Comparative efficacy of different protein supplements on muscle mass, strength, and physical indices of sarcopenia among community-dwelling, hospitalized or institutionalized older adults undergoing resistance training: a network meta-analysis of randomized controlled trials. Nutrients, v.16, n.7, p.941, 2024. doi: 10.3390/nu16070941

LIM, C. et al. An evidence-based narrative review of mechanisms of resistance exercise-induced human skeletal muscle hypertrophy. Medicine and Science in Sports and Exercise, v.54, n.9, p.1546-1559, 2022. doi: 10.1249/MSS.0000000000002929

LUNDSGAARD, A.M.; FRITZEN, A.M.; KIENS, B. The importance of fatty acids as nutrients during post-exercise recovery. Nutrients, v.12, n.2, p.280, 2020. doi: 10.3390/nu12020280

MARGOLIS, L.M.; PASIAKOS, S.M. Low carbohydrate availability impairs hypertrophy and anaerobic performance. Current Opinion in Clinical Nutrition & Metabolic Care, v.26, n.4, p.347-352, 2023. doi: 10.1097/MCO.0000000000000934

MATA, F. et al. Carbohydrate availability and physical performance: physiological overview and practical recommendations. Nutrients, v.11, n.5, p.1084, 2019. doi: 10.3390/nu11051084

MAUGHAN, R.J. et al. IOC consensus statement: dietary supplements and the high-performance athlete. British Journal of Sports Medicine, v.52, n.7, p.439-455, 2018. doi: 10.1136/bjsports-2018-099027

MENDES, M.D.; MALAQUIAS, G.B.; SOUZA, M.L.R. Avaliação da composição corporal e perfil alimentar em atletas de boxe. Revista Brasileira de Nutrição Esportiva, v.15, n.90, p.36-48, 2021. [sin doi]

MILLER, W.L. Disorders in the initial steps of steroid hormone synthesis. Journal of Steroid Biochemistry and Molecular Biology, v.165, n.PtA, p.18-37, 2017. doi: 10.1016/j.jsbmb.2016.03.009

MONTEYNE, A.J. et al. Vegan and omnivorous high protein diets support comparable daily myofibrillar protein synthesis rates and skeletal muscle hypertrophy in young adults. The Journal of Nutrition, v.153, n.6, p.1680-1695, 2023. doi: 10.1016/j.tjnut.2023.02.023

MOORE, D.R. Maximizing post-exercise anabolism: the case for relative protein intakes. Frontiers in Nutrition, v.6, p.147, 2019. doi: 10.3389/fnut.2019.00147

MORENO-PEREZ, D. et al. Effects of protein-carbohydrate vs. carbohydrate alone supplementation on immune inflammation markers in endurance athletes: a randomized controlled trial. European Journal of Applied Physiology, v.123, n.7, p.1495-1505, 2023. doi: 10.1007/s00421-023-05168-6

MORTON, R.W. et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, v.52, n.6, p.376-384, 2018. doi: 10.1136/bjsports-2017-097608

MUSCELLA, A. et al. The regulation of fat metabolism during aerobic exercise. Biomolecules, v.10, n.12, p.1699, 2020. doi: 10.3390/biom10121699

NELSON, D.L.; COX, M.M. Princípios de bioquímica de Lehninger. 8ª ed. Porto Alegre: Editora Artmed, 2022. 1248p. [sin doi]

NICHELE, S.; PHILLIPS, S.M.; BOAVENTURA, B.C.B. Plant-based food patterns to stimulate muscle protein synthesis and support muscle mass in humans: a narrative review. Applied Physiology, Nutrition, and Metabolism, v.47, n.7, p.700-710, 2022. doi: 10.1139/apnm-2021-0806

NIEMAN, D.C. Effects of exercise training on immune function and implications for nutrition support. Alternative Therapies in Health and Medicine, v.26, n.Supl.3, p.17-19, 2020. [sin doi].

PINCKAERS, P.J.M. et al. The anabolic response to plant-based protein ingestion. Sports Medicine, v.51, n.Suppl 1, p.59-74, 2021. doi: 10.1007/s40279-021-01540-8

REIS, C.E.G. et al. Effects of pre-sleep protein consumption on muscle-related outcomes – a systematic review. Journal of Science and Medicine in Sport, v.24, n.2, p.177-182, 2021. doi: 10.1016/j.jsams.2020.07.016

RIBEIRO, A.S. et al. The effects of carbohydrate intake on body composition and muscular strength in trained men undergoing a progressive resistance training. International Journal of Exercise Science, v.16, n.2, p.267-280, 2023.

ROGERI, P.S. et al. Strategies to prevent sarcopenia in the aging process: role of protein intake and exercise. Nutrients, v.14, n.1, p.52, 2021. doi: 10.3390/nu14010052

SCHIAFFINO, S. et al. Molecular mechanisms of skeletal muscle hypertrophy. Journal of Neuromuscular Diseases, v.8, n.2, p.169-183, 2021. doi: 10.3233/JND-200568

SCHMITT, C.S. et al. The effects of a low carbohydrate diet on erectile function and sérum testosterone levels in hypogonadal men with metabolic syndrome: a randomized clinical trial. BMC Endocrine Disorders, v.23, n.1, p.30, 2023. doi: 10.1186/s12902-023-01278-6

SCHOENFELD, B.J.; ARAGON, A.A. How much protein can the body use in a single meal for muscle-building? Implications for daily protein distribution. Journal of the International Society of Sports Nutrition, v.15, p.10, 2018a. doi: 10.1186/s12970-018-0215-1

SCHOENFELD, B.J.; ARAGON, A.A. Is there a postworkout anabolic window of opportunity for nutrient consumption? Clearing up controversies. The Journal of Orthopaedic and Sports Physical Therapy, v.48, n.12, p.911-914, 2018b. doi: 10.2519/jospt.2018.0615

SLATER, G.J. et al. Is an energy surplus required to maximize skeletal muscle hypertrophy associated with resistance training? Frontiers in Nutrition, v. 6, p.131, 2019. doi: 10.3389/fnut.2019.00131

STOKES, T. et al. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients, v.10, n.2, p.180, 2018. doi: 10.3390/nu10020180

THOMAS, D.T.; ERDMAN, K.A.; BURKE, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Medicine and Science in Sports and Exercise, v.48, n.3, p.543-568, 2016. doi: 10.1249/MSS.0000000000000852

TIMRAZ, M. et al. The effect of long chain n-3 fatty acid supplementation on muscle strength in older adults: a systematic review and meta-analysis. Nutrients, v.15, n.16, p.3579, 2023. doi: 10.3390/nu15163579

TROMMELEN, J.; VAN LOON, L.J.C. Pre-sleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutrients, v.8, n.12, p.763, 2016. doi: 10.3390/nu8120763

TSENG, P.T. et al. Omega-3 polyunsaturated fatty acids in sarcopenia management: a network meta-analysis of randomized controlled trials. Ageing Research Reviews, v.90, p.102014, 2023. doi: 10.1016/j.arr.2023.102014

VARGAS-MOLINA, S. et al. Effects of the ketogenic diet on strength performance in trained men and women: a systematic review and meta-analysis. Nutrients, v.16, n.14, p.2200, 2024. doi: 10.3390/nu16142200

VITALE, K.; GETZIN, A. Nutrition and supplement update for the endurance athlete: review and recommendations. Nutrients, v.11, n.6, p.1289, 2019. doi: 10.3390/nu11061289

WARNEKE, K. et al. Physiology of stretch-mediated hypertrophy and strength increases: a narrative review. Sports Medicine, v.53, n.11, p.2055-2075, 2023. doi: 10.1007/s40279-023-01898-x

WHITTAKER, J.; WU, K. Low-fat diets and testosterone in men: systematic review and meta-analysis of intervention studies. The Journal of Steroid Biochemistry and Molecular Biology, v.210, p.105888, 2021. doi: 10.1016/j.jsbmb.2021.105878

WITARD, O.C.; BANNOCK, L.; TIPTON, K.D. Making sense of muscle protein synthesis: a focus on muscle growth during resistance training. International Journal of Sport Nutrition and Exercise Metabolism, v.32, n.1, p.49-61, 2022. doi: 10.1123/ijsnem.2021-0139

ZHANG, W. et al. Testosterone levels positively linked to muscle mass but not strength in adult males aged 20-59 years: a cross-sectional study. Frontiers in Physiology, v.16, p.1512268, 2025. doi: 10.3389/fphys.2025.1512268

Downloads

Publicado

08-12-2025

Como Citar

Santos, M. V. N. dos, Pires, A. C. da S., Duarte, A. L. H., & Souza, M. L. R. de. (2025). O papel dos macronutrientes na resposta de hipertrofia muscular durante o treinamento resistido: uma revisão narrativa. REVISTA CIENTÍFICA DA FAMINAS, 20(2), 90–111. Recuperado de https://periodicos.faminas.edu.br/index.php/RCFaminas/article/view/998